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ABSTRACT

It is sho~m that observed “reliability growth” may be an artifact of
limited—horizon renewal testing. The “growth” of several estimators of
failure rate and MTBF with test time is examined for a stationary renewal
process.

F~~ESSI0N f~
NTIS S.dISII ~~
DOG BUfl $sct,on Q
UNANNOUNCED 0
JUSTIFICATION

BY

~~ ftn~ ,AY&a1JJUU ~~t$
i1~I. AVAIL and/or SPEOW.

I



“RELIABILITY GROWTH ” AS AN ARTIFACT OF RENEWAL TESTING

by

William S. Jewell

1. INTRODUCTION

“Reliability growth” refers to the empirically—observed fact  that

the performance of a complex system shows improvement as the newly—designed

system moves into the development program and is tested under actual or

simulated operational conditions. This improvement results primarily

from the identification and correction of initial design and engineering

deficiencies [6] ,  but may also be due to improved famil iar i ty in the field

by operating personnel , revised operating and maintenance procedures, etc.

Analysis and extrapolation of reliability growth is of critical importance

to both the manufacturer and the purchasing agency because of the need to

balance (1) the high costs of making engineering changes; (2) the costs and

delays in extended testing; (3) the operational support costs of maintenance

and replacement ; and (4) the need for operational readiness and reliability.

Currently,  the U.S. Air Force is experimenting with a new procurement

procedure, the Reliability Improvement Warrant (3 1, (8 1, [12], under which

financial incentives are offered to contractors “ to design and produ ce

equipment which will have a low failure rate as well as low repair costs

af te r  fai lure due to field/operational use” [12].

Beginning with [14], there have been many models proposed for

reliability growth [5), [7]. The two maj or approaches (11] are: (1) to

assume that observable improvements occur only in discrete phases, as

major redesign efforts follow testing; (2) to assume that  a continuous

“learning curvet’ of reliability improvement applies during the development
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program . The most successful model of the second type is due to

.3. T. Duane (see (7]); it assumes that the failure process is time—

varying Poisson, with cumulative mean failure rate a decreasing

algebraic (Weibull) function of system total operating time (including

fixes and replacements).

The purpose of this paper is to suggest that some of the “reliability

growth” supposedly observed during testing programs may be an artifact of

the parameter chosen for measurement , and the statistic used to estimate

that parameter , particularly in short—duration field performance demonstra—

tion programs after major design developments have been implemented .

Our approach , suggested by I. Shimi, is to assume that the underlying

failure process is , in fact , atabZ~e, and to show that reasonable estimators

are biased functions of the testing interval length . These results

suggest that it may be d i f f icu l t  to separate true reliability growth from

the measurement process.
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2. TESTING MODEL AND PERFORMANCE ESTIMATORS

We assume that the failure mechanism of the system generates a

renewal process , in which successive random intervals between failures,

X1,X2, ... are independent and identically distributed samples from a

distribution function F , with density f(x) dF(x)/dx , complement

F ~ 1 — F , and moments ta. E{X~} . Consider a single system

placed on renewal testing for a total operating time of t hours; during

this interval a random number N(t) of failures and instantaneous fixes

occur , with the last failure occurring at epoch 
~N(t) = Xl

4
~
X
2+~~~~

+X N(t) ‘

‘t
N(t) < t (N(t) > 0) (Figure 1).

}—X1 -H ~~~~~~ 
icr X~

* ~~ — -*— A — time
0 t

Start of test End of test
I— ~N

Figure 1

Renewal Testing Scheme
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The first performance estimator to be considered might be the

empirical failure rate

(1) ~~ t) N(t) (t > 0)

Presumably , if there is “reliability growth ,” N(t) will be “concave

down” [2], or 4i(t) will be decreasing with t . (131.

A more useful performance measure, and the one upon which the

Reliability Improvement Warranty is based , is the mean—time—between—failure

(MTBF). Depending upon one’s statistical sophistication, there are three

estimators that suggest themselves from Figure (1):

1. The Naive MTBF Estimator

Since there are N(t) complete samples observed , the

sample mean lifetime should be used as MTBF estimator :

N( t )
(2) i

1
(t )  = ) Xi/N(t) = YN(T) /N(t) , (t > 0)

i=1

assuming that at least one failure occurs in (0,T] (N(t) > 0)

2. The Clever MTBF Estimator

The alert reliability engineer will realize that the

residual interval ~~ 
— , represents incomplete sample

information that should not be discarded . Further , since

exponentially—distributed lifetimes are of important practical

interest , and it is known that these lifetimes are “memory less,”

one might argue that the incomplete sample is similar to an

(N(t) + 1)st sample , so the MTBF estimator should be: 



p
2
(t) — N ( t ) + i (t > 0)

which is defined even if there are no failures .

3. The Sophisticated MTBF Estimator

A sophisticated analyst will have read the literature on

renewal testing (see [5] and [ 9 ] ) ,  and will realize that the

maximum likelihood estimator of MTBF in the exponential case

is the total-time-on-test divided by the number of complete

samples , or

(4) ~i3
(t )  = t / N (t )  , (t > 0)

again def ined only if N(t) > 0

In examining the above estimates, it is clear that p
3(t) 

= l/~ (t)

> u1(t) , and 1.1
3

( t )  > i.i 2
(t) , but that the actual sample values

may follow rather complicated paths as functions of the testing interval

t .

In what follows we shall take two approaches:

(1) Find the expected value of each estimator . This reflects the

mean value of the sample function for a single—system test, and

also approximates the sample function if a very large number of

systems are on test simultaneously , and the individual estimators

are averaged;

(2) Secondly, we shall examine whether pool ing the estimates for

many identical systems on test provides any improvement , by

looking at the limiting values of these pooled statistics.
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Naturally, a more complete analysis would examine the distribution

of each statistic with a finite number of systems on test; but , as we

shall see , the (undesired) bias of these estimators negates any more

detailed analysis.

.



3. THE FAILURE RATE ESTIMATOR

If the estimator (1) is used , its mean value is:

(5) E { i p ( t ) )  — M (t)/t

where M(t)  = E{N(t)} is the ordinary renewal (counting ) function,

given by:

(6) M(t) = F(t) + (M(t - x)dF(x)
Jo

Many analytic results are known about M(t) , such as :

(7) (t/m
1
) — 1 < M (t)  < F (t ) / F ( t )

(8) M( t) ~ f(O) . t + [f ’ (O) + f2(Ofl ~~ (t 0)

(9) M (t) ~ - A (t ~
l \2mi /

with marty more results known for specific F , or special shape assumptions,

such as IFR, IFRA , NBU , etc.

However , here we merely note that (6) will only be (m 1
)~~ for all

t in the special case of exponential lifetimes. In more general cases

M(t)/t begins at a value f(O) (the intercept of the lifetime density)

r~~ < 2  i
and can either grow or decline L.—f (0) > f (O)j for small values of t

For large values of t , M(t)/t can either approach (m
1
)~~ from above

or below depending upon whether the process is more or less “regular”

[m2 
~ 

than the exponential. 

-- ~~~~~~~~
-- - ,— -

~ 
-- -. --, -...- 



In short , the transient behavior of the mean value of N (t)/t over

a few av€~rage lifetimes can exhibit either apparant 
reliability “growth”

or “decay ,” even though the underlying process is stationary .

If S systems were on test , and each reported N
1 

failures

(1 = 1,2, ..., i) , a pooled estimator would be:

(10) ~ (t) = 
~

5

~ 1~
t) a.s. M (t)

as S , giving the same result.
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4. THE MEAN VALUE OF NAIVE MTBF ESTIMATOR

The average value of the naive MTBF estimator (2),

(11) e
1(t) 

= E{~1(t)} 
= E { (Y N ( t) / N (c)]  I 

N(t) > 0)

has interesting properties. By direct argument

(12) Pr CN(t) = ~ ‘
~n(t) ~ (y ,y  + dy ] )  = f

fl*(y)~~(t — y)dy , y r [O ,t]

where f is the n—fold convolution of f , so that:

~ 

ffl*(~)~~~ - y)d y
ncr].

(13) e
1
(t) = F( t)

The numerator can be simplified using LaPlace (—Stieltjes) transforms,

giving the surprising results:

t

f 
yf ( y ) d y

(14) e
1(t) = F(t) = .j’[’ — dy = E~X I 

X < t }

the truncated mean of the underlying distribution .

From this, we observe :

(1) The average value of the naive estimator will always exhibit

apparent “reliability growth” as t increases;

(2) Only if X has a finite range [0,R] will e1(t) achieve

its ultimate value, m
1 , 

for t > R

A
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More specif ically, for small t

e
1

(t )  ~ + ~~ 
[f~ g~] t2 ; (f(O) # 0)

(15) 
2 1 f’’(O) 2

t +

~~~
3•

~~

••

[ f’(O)] t ; (f(0) 0) (f’(O) #0)

that is, the apparent growth in the estimator depends only on the shape

of the density f near the origin, not on any specific values.

• For large t , the behavior of e
1
(t) depends upon the tails of F

Specifically,  for algebraic tails, ~ (t) ~ A/t~
’
~ for large t

e1(t) ~ 
m
1 

— A(l + c~)/(ctt~)

The transient behavior of (14) can be quite long. For exponential

lifetime, ~ (y) = e~~~ , we find :

(16) e
1
(t) ~ ~ 

[ l_ e
_Xt

]

From Figure 2 (solid line #1) we see that there is a significant bias

in the naive MTBF for testing intervals less than, say , four MTBFs.
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5. THE CLEVER MTBF ESTIMATE

The average of (3) cannot, in general, be put into simple f orm:

(17) e
2(t) 

- E~~2 ( t ) }  = E
~~N(t~ + 

= 

~ 1 
P (t)

n-O

where P
~
(t) is the counting distribution associated with N(t)

However, since

(18) P (t) = F~’ (t )  — F~~
’
~~~ (t)

where F is the distribution corresponding to f , we have the

equivalent result

1 n*(19) e2(t) = t — 

~ + ~~ 
F (t)

n l

For small t , we have the approximate result

(20) e2(t) ~~~ t - - [~
‘ o 

+ 
f2(O) 

~3]

Since N(t) ÷ ~ and N(t) 
~ 1/rn1 with probability one as t +

e2
(t) approaches m

1 . We suspect this growth is monotonic (apparent

“reliability growth”) in general, but have not been able to prove it.

The exponential case can be summed explicitly, giving:

1. —Xt(21) e2(t) ~ [1 — e I

Figure 2 (Solid line #2) shows that this estimator grows more rapidly

than (16), but still shows significant bias. If we neglect the cases

where N(t) 0
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(22) E 
~N t ~ + ~ 

N(t) 1 [1 _ e~~
t
(1+ At)) e

1
(t)

which shows in what sense the reliability engineer was clever about

the incomplete sample .

i~
II

~ 

- . - . -• • - - -~~~~. - • • - . ~~~~~---~~.- -~~~
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6. THE SOPHISTICATED MTBF ESTIMATE

The average of the total—time—on—test estimator (4) is also difficult

to simplify.

t ~ 
1P (t)

(23) e3(t) E {i~3 ( t) }  = E
~~N~t) 

N(t) > o} F(t)

Using (18), we obtain

t[Ft — 

n~1 
n(n~~ 1) 

F~
*(t)]

(24) e
3(t) = F( t)

For small (t) , we obtain

2
e3

(t) — f (O)  -~ - ( f ( O )  
~ 0)

(25) 
2

— ~~~~~ .
~~~

— (f(O) =0) (f’(O) # 0)

Again , e3(t) -~ m1 as t -‘~ , probably mono tonically.

The exponen tial case can be expressed as:

(A t) 2e~~~ 
j~ l ~~ 

Ate~~
t
~~~ 

ex

; 
1 dx

(26) e
3(t) = 

At A —Atl — e  l — e

and is shown in Figure 2, (Solid line #3).

Thus the mean of the sophisticated MTBF estimator grows more rapidly

than the other two, but “over shoots” the true value by more than 30%

at about four MTBFs! There it exhibits very slow “reliability decay, ”

being still 1.056/A at 20 MTBFs!

L :~~~~~ .. . . -~~~~~~~~~ .- - - -~~~~~~~~~~~~ • - • — ---- ~~~---~~- -.- ~~~~- . . •  ~~~~—-
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7. POOLED ESTIMATORS

It might seem that pooling the estimators for many simultaneous

systems on test might eliminate some of the above difficulties. We

examine the limiting case when the number of systems is large.

For the naive estimator , assume that only N1(t)  > 0 and the

corresponding epochs are reported from each system. Then

27 i~l 
Y
N
(t) 

a.s. 
E {YN ( t )  i N( t) > 0)

( ) p
1(t) = E {N ( t)  1 N ( t) > 0)

~ 
(N~(t) > 0)

i—I.

and it can be shown that in the exponential case :

(28) p
1
(t) - ~~~ [1 - 

1 ~~e ]

From Figure (2) (Dashed line #1), we see that this is , in fact ,

wor se than the mean of the unpooled estimator.

For the clever estimator , instead of averaging (3) over all systems ,

one would pool both the total interval and the number of (complete and

incomplete samples) including cases where N~ (t) is zero, so:

St t a.S. t• (29) ~.z2(t) — 
= 1 M( t) + I

~ 
(N
i

(t) + 1) ~ 
~ N~ (t) + 1

i—i

in the exponential case.

(30) ~2(t) = + ~ 1]
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which , in Figure 2 (Dashed line #2) is also well below the mean value

for a single system .

Finally , for the sophisticated estimator , who receives only data

with at least one failure from each system, we can argue that, in the

limit:

‘31’ ~ 
— 

St a.s. t — 
tF(t)

~ / ~i
3

~~~ t j  — S E{N (t )  N ( t )  > 0) — M( t)

~ 
(N
i
(t) > 0)

j=l

In the exponential case

(32) j i3(t) ~ + (1 — e~~
t)

which is identically e2
(t) (21).

Although pooled estimates from several systems on test no doubt

have greatly reduced variance, we must conclude that they , in fact,

exhibit worse “reliability growth” bias than the corresponding mean

estimators.

_  
- - j
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• 8. CONCLUDING REMARKS

In concluding , it is perhaps appropriate to mention some other

observations about the reliability growth literature:

(1) There often seems to be confusion between the growth or decline

of hazard rate function, h( t) = f(t)/~~(t) , and the under-

lying mechanisms (if any) of reliability improvement. The

first operates in “local” time (since repair or replacement);

the second operates in “global” time (since systems testing began) .

We have already seen how non—constant h ( t )  can lead to growth

or decline in the average failure rate , M ( t) / t  , with no

underlying reliability growth mechanism.

(2) As pointed out in [2], if und erlying reliability growth does

exist [as in a time—varying Poisson failure process], then

successive intervals are not independent, and , of course, not

identically distributed . Thus , any methodology that assumes

growth, but uses standard Poisson — or renewal — process
methodology must be viewed with suspicion.

(3) Some literature speaks as if total operational time is sig-

nificant — that is, a test over 5,000 for 1,000 hours each.

In fact, we have seen that parallel testing may stabilize the

estimator, but does not remove the transient bias over the

real time testing interval. 
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We realize that more issues about reliability growth have been

raised than resolved . Removal of testing biases in the stable case

is only the first objective of research in this area. There is clearly

a great need for additional work on extension of true, continuous reliability

growth, as well as investigation of the statistical confidence of these

estimators for different experimental protocols. We believe a correct

formulation of this problem must use a Bayesian point of view, and in—

co~porate the costs of experimentation into the design decision process.

Only in this way will performance guarantee programs be placed on a sounder

analytical basis. 

__ __ —_—__ — _ __ ___ ____ _ _ __•_ _ _ __ _ _ —— _ •_  — — - -
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